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Abstract. The two-body density matrix for 4He,16 O and 40Ca within the Low-order approximation of the
Jastrow correlation method is considered. Closed analytical expressions for the two-body density matrix,
the center of mass and relative local densities and momentum distributions are presented. The effects of
the short-range correlations on the two-body nuclear characteristics are investigated.
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1 Introduction

Nowadays two-body knock-out reactions such as (γ,NN)
[1,2] and (e, e′NN) [3–6] are intensively studied in order
to extract information about the nucleon-nucleon short-
range correlations (SRC) in nuclei. In particular, the cross
section for the two-nucleon emission processes is generally
related to the two-body spectral function at least in PWIA
[7]. The two-body currents and the final state interactions
should be also taken into account. The first calculations
of the two-nucleon spectral function of 16O have already
been performed [8] by treating the long-range correlations
within a Dressed RPA approach and including the SRC
in terms of the defect functions emerging as a solution of
the Bethe–Goldstone equation for finite nuclei. The results
have been successfully applied for calculating the (e, e′pp)
cross-sections [6].

Due to the complexity of the problem, however, it is
highly desirable to reach a theoretical description of the
two-body knock-out reactions directly in terms of the nu-
clear ground state (e.g., the ground-state two-body den-
sity matrix) without the necessity to deal with the two-
body spectral function which is an enormously more com-
plicated object due to the presence of various excited
states of the system. Making use of series of more or
less controlled approximations, people usually try to in-
corporate in this context simplified expressions or com-
binations of physical quantities such as the two-particle
spectroscopic factors and overlap functions [9], relative
and center-of-mass pair momentum distributions, com-
bined two-body momentum distributions [10] and gener-
alized momentum distributions (see e.g. [11]).

The situation is quite similar to the theoretical descrip-
tion of one-particle removal processes in terms of the nu-
clear ground state characteristics. At the beginning, it has
been demonstrated [16] that the knowledge of the ground-

state one-body density matrix of the target nucleus is suffi-
cient to restore the single-particle overlap functions, spec-
troscopic factors and separation energies associated with
the bound (A − 1)-particle eigenstates. Then, quantita-
tive estimates have been obtained [17] within a simple
and analytical one-body density matrix model [18] which
takes into account the short–range correlations in terms
of the Jastrow correlation method. Plausible conclusions
have been made for the properties of singe-particle overlap
functions in comparison with the associated shell model
orbitals and the natural orbitals [18–20] which are of fre-
quent interest in this context [21,22]. The resulting overlap
functions and spectroscopic factors have been used to ana-
lyze differential cross sections of (p, d) reactions and single-
particle momentum distributions in (e, e′p) reactions [23].
Finally, more sophisticated representations of the one-
body density matrix [24–26] have been used for extracting
overlap functions and spectroscopic factors further applied
for analyzing (p, d) reaction cross-sections [27]. Thus, the
resulting comparative study [27] has clarified the impact
of the different types of nucleon-nucleon correlations on
the one-particle removal reaction cross-sections.

Recently, similar restoration procedure has been pro-
posed in [28] connecting the two-nucleon overlap func-
tions associated with the bound states of the (A − 2)-
or (A − 2)-particle system with the asymptotic behav-
ior of the ground state two-body density matrix of the
A-particle system. This makes it possible to calculate, at
least in principle, the two-body overlap functions, spectro-
scopic factors and separation energies on the basis of real-
istic representations for the ground state two-body density
matrix.

To test the restoration procedure for the two-nucleon
overlap functions one clearly needs a simple and analytical
representation of the two-body density matrix which ade-
quately reflects the properties of the nuclear ground state
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and also takes into account the short–range correlations
in nuclei.

The present paper suggests such a simple and analyt-
ical representation of the ground state two-body density
matrix derived within the Low-order approximation of the
Jastrow correlation method. The associated two-particle
nuclear characteristics for the closed s − d shell nuclei
4He,16O and 40Ca are analyzed. A comparison with the
realistic Variational Monte-Carlo calculations [12–14] is
also made. It justifies the physical meaning of the approx-
imation as a tool for analyzing the impact of the nuclear
SRC in a simple way. The analytical expressions obtained
can facilitate the explanation of questions arising from the
interpretation of physical properties which are important
in treating the two-particle emission processes in nuclei.

The paper is organized as follows. The general defini-
tions of the two-body density matrix and the associated
nuclear characteristics in coordinate and momentum rep-
resentation are introduced in Sect. 2. The analytical ex-
pressions derived within the Low-order approximation of
the Jastrow correlation method are given in Sect. 3. Closed
analytical expressions for the two-body nucleon momen-
tum and density distributions are collected in Sect. 4. Re-
sults and discussions are given in Sect. 5, while the conclu-
sions are summarized in Sect. 6. The Appendix contains
the coefficients entering the analytical expressions for 4He
and 16O nuclei.

2 Two-body density matrix

2.1 Definitions and properties

The physical antisymmetric state of a system of A identi-
cal fermions ΨA normalized to unity defines a set of den-
sity matrices of order p = 1, 2, ..., A

ρ(p)(x1, x2, ..., xp;x′1, x
′
2, ..., x

′
p)

= 〈Ψ |a†(x1)a†(x2)...a†(xp)a(x′1)a(x′2)...a(x′p)|Ψ〉, (1)

where a†(xi) and a(xi) stand for creation and annihilation
operators for a nucleon at position xi, which includes the
spatial coordinate ri, the spin si and the isospin τi. In
particular, the one- and two-body density matrices are
defined in coordinate space as:

ρ(1)(x, x′)=〈Ψ (A)|a+(x)a(x′)|Ψ (A)〉, (2)

and

ρ(2)(x1, x2;x′1, x
′
2)

= 〈Ψ (A)|a+(x1)a+(x2)a(x′1)a(x′2)|Ψ (A)〉, (3)

respectively. From these defining equations one can easily
recognize many of the properties of the density matrices.
They are Hermitian

ρ(1)(x, x′) ≡ ρ(1)∗(x′;x) ,

ρ(2)(x1, x2;x′1, x
′
2) = ρ(2)∗(x′1, x

′
2;x1, x2) , (4)

and trace–normalized to the number of particles and of
pairs of particles:

Tr ρ(1) =
∫
ρ(x) dx = A , (5)

Tr ρ(2) =
1
2

∫
ρ(2)(x1, x2) dx1 dx2 =

A(A− 1)
2

, (6)

with diagonal symmetric elements

ρ(x) = ρ(1)(x, x) , ρ(2)(x1, x2) = ρ(2)(x1x2;x1x2) . (7)

In addition, the two–body density matrix ρ(2) is antisym-
metric in each set of indices, e.g.,

ρ(2)(x1x2;x′1x
′
2) = −ρ(2)(x2x1;x′1x

′
2) , (8)

so that its diagonal elements vanish identically if both
coordinates are equal, i.e., ρ(2)(x1, x1) = 0.

The one- and two-body density matrices are related by
the formula∫

ρ(2)(x1x2;x′1x2) dx2 =
A− 1

2
ρ(1)(x1, x

′
1) , (9)

and both can be presented in the momentum space using
the Fourier transforms:

n(1)(k; k′) =
∫
ρ(x, x′) exp [i (k.r− k′.r′)] drdr′ (10)

n(2)(k1, k2; k′1, k
′
2) =

∫
ρ(2)(x1, x2;x′1, x

′
2)

× exp [i (k1.r1+k2.r2−k′1.r
′
1−k′2.r

′
2)]

× dr1dr2dr′1dr
′
2 , (11)

where ki stands for the momentum ki, spin si and isospin
τi of the i−th particle. Relations similar to (4)–(8) held for
the one- and two-body density matrices in the momentum
space as well.

2.2 Two-body nuclear characteristics

Typical ground state quantities of interest one usually con-
siders are the local density

ρ(r) ≡ ρ(r, r) =
∑
sτ

ρ(x,x), (12)

the associated elastic form-factor

F (q) =
1
A

∫
ρ(r) exp[iq.r] dr (13)

and the nucleon momentum distribution

n(k) ≡ n(k,k) =
∑
sτ

n(k,k) (14)
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obtained after spin (and/or isospin) summation of the di-
agonal elements of the one-body density matrix in coor-
dinate and momentum representation.

The two-particle emission experiments however require
some knowledge of physical quantities associated with the
two-body density matrix. For example, the diagonal ele-
ments of the two-body density matrix ρ(2) in coordinate
space, (3), define the center-of-mass pair local density dis-
tribution:

ρ(2)(R) =
∫
ρ(2)(R + s/2,R− s/2)ds (15)

and the relative local density distribution:

ρ(2)(s) =
∫
ρ(2)(R + s/2,R− s/2)dR (16)

while the diagonal elements in momentum space (11) de-
fine the associated center-of-mass and relative pair mo-
mentum distributions:

n(2)(K) =
∫
n(2)(K/2+k,K/2−k)dk (17)

and

n(2)(k) =
∫
n(2)(K/2+k,K/2−k)dK , (18)

respectively.
The physical meaning of ρ(2)(s) and n(2)(k) is the

probability to find two particles displaced of a certain
relative distance s = r1−r2 or moving with relative mo-
mentum k = (k1−k2)/2, respectively, while ρ(2)(R) and
n(2)(K) represents the probability to find a pair of par-
ticles with center-of-mass coordinate R = (r1 + r2) /2 or
center-of-mass momentum K = k1+k2, respectively.

3 Analytical expressions for the two-body
density matrix

3.1 Mean-field approximation

The mean–field approximation to the nuclear ground state
of an A particle system is represented by a single Slater
determinant

ΦASD(x1, x2, . . . , xA) =
1√
A!

det |ϕi(xj)| , (19)

where the orthonormalized set of single–particle func-
tions ϕi(x) = ϕi(r,s, τ) is emerging from some kind of
shell model or self–consistent mean–field calculations. The
ground state ΦASD incorporates two kinds of correlations:
(1) Pauli correlations associated with the antisymmetric
properties of ΦASD and (2) the correlations among the nu-
cleons forming the nuclear mean field that determines the
particular form of the single particle states ϕi(x).

The following expressions for the one- and two-body
density matrices are well known from the mean–field the-
ory

ρSD(x, x′) =
A∑
i=1

ϕ∗i (x)ϕi(x′) , (20)

ρ
(2)
SD(x1x2;x′1x

′
2) =

A∑
i,j=1

ϕ∗ij(x1x2)ϕij(x′1x
′
2) , (21)

where the antisymmetric uncorrelated two-body wave
functions are used

ϕij(x1x2) =
1√
2

[
ϕ∗i (x1)ϕj(x2)− ϕ∗j (x1)ϕi(x2)

]
. (22)

In order to obtain analytical expressions which will
allow us to compute ρSD and ρ(2)

SD in a direct way we fur-
ther assume all states belonging to the uncorrelated Fermi
sea as represented by harmonic oscillator single-particle
wave functions ϕHOi (x) which depend on the harmonic-
oscillator length α, heaving the same values for protons
and neutrons. In particular, these are the states 1s for
4He, 1s and 1p for 16O and 1s, 1p, 1d and 2s for 40Ca.
Because we are interested in spin (and/or isospin) free
quantities like total center of mass and relative coordinate
and momentum distributions we consider only the matrix
elements which are fully diagonal in spin and isospin vari-
ables. Under these assumptions (21) has closed analytical
form:

ρ
(2)
SD(r1, s1, τ1; r2, s2, τ2; r3, s1, τ1; r4, s2, τ2)

=
1
2

[ρ(r1, r3)ρ(r2, r4)− δτ1τ2δs1s2ρ(r1, r4)ρ(r2, r3)],

(23)

since the spin and isospin free one-body density matrix

ρ(r1, r2) =
∑
sτ

ρSD(r1, s, τ ; r2, s, τ) (24)

is an explicit product of exponent and polynomial factors
depending only on the scaled coordinates xi = αri:

ρ(r1, r2) =
α3

π3/2
exp[−x2

1 + x2
2

2
] PSD(x1,x2) , (25)

where

PSD(x1,x2)
= 1 for 4He ,

= (1 + 2x12) for 16O ,

= 1
2

[
5 + 4x12 − 2 (x2

1 − 2x12 + x2
2)
]

for 40Ca

(26)

and xij ≡ xi.xj = α2rirj cos θij , θij being the angle be-
tween radius vectors ri and rj .
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3.2 Jastrow correlations method

In the present paper we consider the nucleon-nucleon
SRC within the Jastrow correlation method [29–32]. This
method incorporates the nucleon-nucleon SRC in terms of
the wave function ansatz:

Ψ (A)(r1, r2, . . . , rA) = (CA)−1/2
∏

1≤i<j≤A
f(| ri − rj |)

×ΦASD(r1, r2, . . . , rA), (27)

where ΦASD is a single Slater determinant, f(r) is a correla-
tion factor which goes to unity for large values of r and CA
is a normalization constant. Except for systems containing
very small number of particles it is impossible to calculate
the one- and two-body density matrices using the Jastrow
ansatz (27). One usually applies a perturbation expansion
in terms of linked diagrams [30]. The so-called Low-order
approximation (LOA) keeps all terms up to second order
in h = f − 1 and first order in g = f2 − 1 in such a way
that the normalization of the density matrices is ensured
order by order [30]. In particular, the resulting two-body
density matrix is of the form [31,32]:

ρ
(2)
LOA(x1, x2;x3, x4) =

ρ
(2)
SD(1234) + [ f∗13 f24 − 1] ρ(2)

SD(1234)

+
∫
dx5 [(f∗15f35 − 1) + (f∗25f45 − 1)]

×
[
ρSD(x1;x3)ρ(2)

SD(2545) + ρSD(x1;x4)ρ(2)
SD(2553)

+ ρSD(x1;x5)ρ(2)
SD(2534)

]
+
∫ ∫

dx5dx6 [f∗56f56 − 1]
{
ρ

(2)
SD(2665)ρ(2)

SD(1534)

+ ρSD(x1;x5)ρSD(x2;x3)ρ(2)
SD(5646)

+ρSD(x1;x5)ρSD(x2;x4)ρ(2)
SD(5663)

+ ρSD(x1;x5)ρSD(x2;x6)ρ(2)
SD(5634)

}
, (28)

where fij ≡ f(|ri − rj |), ρ(2)
SD(1234) ≡ ρ

(2)
SD(x1, x2;x3, x4)

and the integration over xi means summation over the
spin and isospin variables and integration over the spacial
coordinate.

It is clearly seen from (28) that ρ(2)
LOA generally de-

pends only on two ingredients, the correlation function
f(|ri − rj |) and the two-body density matrix in its mean-
filed approximation ρ

(2)
SD, (21). In the previous (25,26)

we have already derived ρ
(2)
SD in closed analytical form

in terms of harmonic-oscillator single-particle wave func-
tions. In order to find closed analytical expression for
ρ

(2)
LOA, (28), we further assume that the correlation factor
f(r) is state-independent and has simple gaussian form:

f(r) ≡ f(r) = 1− c exp(−β2r2) , (29)

where the correlation parameter β controls the healing dis-
tance, while the parameter c accounts for the strength of

the SRC. Under these additional assumptions, performing
explicitly the integrations entering (28), the diagonal part
in the spin and isospin variables of ρ(2)

LOA transforms to
pure algebraic expression:

ρ
(2)
LOA(r1, s1, τ1; r2, s2, τ2; r3, s1, τ1; r4, s2, τ2)

= ρ
(2)
SD + ρ

(2)
A + ρ

(2)
B + ρ

(2)
C , (30)

where the first term ρ
(2)
SD is already defined by (25,26).

The sum of this term ρ
(2)
SD with the next one

ρ
(2)
A =

1
2
{c2exp[−(z1 − z2)2 − (z3 − z4)2]

− cexp[−(z1 − z2)2]− cexp[−(z3 − z4)2]}
× {ρ(r1, r3)ρ(r2, r4)− δτ1τ2δs1s2ρ(r1, r2)ρ(r3, r4)} ,

(31)

where zi = βri is often referred to as a first order approx-
imation to the Jastrow two-body density matrix [33]. The
main disadvantage of this approximation is that it does
not satisfy the normalization condition (6) and thus has
restricted physical significance. The third term ρ

(2)
B in (30)

has the form:

ρ
(2)
B =

c2

2

·
{

4
[
ρ(r1, r3) ρ(r2, r4)

− δτ1τ2δs1s2ρ(r1, r4) ρ(r2, r3)
]
(I13 + I24)

− ρ(r1, r3) (I1324 + I2424)− ρ(r2, r4) (I1313 + I2)
+ δτ1τ2δs1s2

[
ρ(r2, r3) (I1314 + I2414)

+ ρ(r1, r3) (I1324 + I2424)
]}

− c

2

{
4
[
ρ(r1, r3) ρ(r2, r4)

− δτ1τ2δs1s2 ρ(r1, r4) ρ(r2, r3)
]
(I1 + I2 + I3 + I4)

− ρ(r1, r3)(I124 + I224 + I324 + I424)
− ρ(r2, r4)(I113 + I213 + I331 + I413)
+ δτ1τ2δs1s2

[
ρ(r2, r3)(I114 + I214 + I314 + I414)

− ρ(r1, r4)(I123 + I223 + I323 + I423)
]}
, (32)

while the last term ρ
(2)
C reads:

ρ
(2)
C = cM(r1, s1, τ1; r2, s2, τ2; r3, s1, τ1; r4, s2, τ2; y)

−1
2
c2M(r1, s1, τ1; r2, s2, τ2; r3, s1, τ1; r4, s2, τ2; 2y),

(33)

M = 4
[
ρ(r1, r3) Y24 − ρ(r2, r4) Y13

]
−Y1324 + ρ(r1, r3) Z42 − ρ(r2, r4) Z13

−δτ1τ2δs1s2
{

4
[
ρ(r1, r4)Y23 − ρ(r2, r3)Y14

]
−Y1423 − ρ(r2, r3)Z14 − ρ(r1, r4)Z23

}
. (34)
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where the following products of exponential and polyno-
mial factors depending on the scaled coordinates xi = αri
and the dimensionless parameter y = β2/α2 are intro-
duced:

I1 = exp[− yx2
1

1 + y
]PI1(x1)

I12 = exp[−y
(
x1

2 + x2
2 + 2y (x1 − x2)2

)
1 + 2 y

]PI2(x1,x2)

I123 =
α3

π3/2
exp[−x

2
2 + x2

3 + y(2x2
1 + x2

2 + x2
3)

2(1 + y)
]

·PI3(x1,x2,x3)

I1234 =
α3

π3/2

exp[−x3
2+x4

2+2y(x1
2+x2

2)+2y2(x1−x2)2

2(1+2y)
]

·PI4(x1,x2,x3,x4) (35)

and

Y12 =
α3

π3/2
exp[−x

2
1 + x2

2

2
]PY2(x1,x2; y)

Z12 =
α3

π3/2
exp[−x

2
1 + x2

2

2
]PZ2(x1,x2; y)

Y1234 =
α6

π3
exp[−x

2
1 + x2

2 + x2
3 + x2

4

2
]

·PY3(x1,x2,x3,x4; y) (36)

The two-body density matrix represented by (30-36)
does not depend on the particular choice of the nucleus.
All nuclear structure information is reflected by the poly-
nomials {PI , PY , PZ} entering (35,36). Their explicit form
is given in the Appendix for 4He and 16O nuclei. As
a result we end up with closed analytical algebraic ex-
pressions for the two-body density matrix involving three
independent parameters, the harmonic oscillator length
α and the correlations parameters c and β. Due to its
gaussian-polynomial structure one can easily derive the
Fourier transforms defining the associated two-body den-
sity matrix in the momentum space.

4 Local density and momentum pair
distributions

Having derived the two-body density matrix in the co-
ordinate space one is able to calculate all two–body nu-
clear characteristics in close analytical form. Changing the
coordinates of two particles r1 and r2 in (30-36) to the
center-of-mass R = (r1 + r2) /2 and relative s = (r1−r2)
coordinates, one obtains the center-of-mass ρ(2)(R), (15),
and relative ρ(2)(s), (16), pair local distributions. Using
the dimensionless variables R = α|R| and s = α|s| they

have the following form:

ρ(2)(R) = Aexp
[
−
(√

2R
)2
]

+Bexp
[
− 2(1 + 2 y)

2 + 3 y

(√
2R
)2
]

+Cexp
[
− 1 + 4 y

1 + 3 y

(√
2R
)2
]
, (37)

ρ(2)(s) = Dexp
[
−
(
s/
√

2
)2
]

+E exp
[
−2(1 + 2 y)

2 + 3 y

(
s/
√

2
)2
]

+Fexp
[
−1 + 4 y

1 + 3 y

(
s/
√

2
)2
]

+Gexp
[
−(1 + 4 y)

(
s/
√

2
)2
]

−H exp
[
−(1 + 2 y)

(
s/
√

2
)2
]
, (38)

where

A =
α3

π3/2
[η1(R) + 2 c η2(R, y)− c2 η2(R, 2 y)],

B =
α3

π3/2
c η3(R),

C =
α3

π3/2
c2 η4(R), (39)

D =
α3

π3/2

[
µ1(s) + 2 c µ2(s; y)− c2 µ2(s; 2y)

]
,

E = − α3

π3/2
2 c µ3(s; y),

F =
α3

π3/2
c2 µ3(s; 2y)

G =
α3

π3/2
c2µ1(s),

H = − α3

π3/2
2 cµ1(s). (40)

The center-of-mass n(2)(K), (17), and relative n(2)(k),
(18), pair momentum distributions follow after perform-
ing Fourier transform of the center-of-mass ρ(2)(R,R′)
and relative ρ(2)(s,s′) pair density matrices, respectively.
Again, introducing K = |K| /α and k = | k| /α one ob-
tains:

n(2)(K) = A′exp

[
−
(
K√

2

)2
]

+B′exp

[
− 1 + 2 y

2 + 5 y

(
K√

2

)2
]

+C′exp

[
− 1

(1 + y)

(
K√

2

)2
]
, (41)
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n(2)(k) = D′exp
[
−
(√

2k
)2
]

+E ′ exp
[
−2 (1 + 2 y)

2 + 5 y

(√
2k
)2
]

+F ′exp
[
− 1

1 + y

(√
2k
)2
]

+G′exp
[
− 1

1 + 4 y

(√
2k
)2
]

−H′exp
[
− 1 + 2 y

1 + 4 y

(√
2k
)2
]
, (42)

where

A′ =
√

2
2α3π3/2

(
γ1(K) + 2c γ2(K, y)− c2 γ2(K, 2 y)

)
,

B′ =
√

2
2α3π3/2

c γ3(K) , C′ =
√

2
2α3π3/2

c2 γ4(K), (43)

D′ =
√

2
2α3 π3/2

(
θ1(k) + 2c θ2(k, y)− c2 θ2(k, 2 y)

)
,

E ′ =
√

2
2α3 π3/2

cθ4(k), F ′ =
√

2
2α3 π3/2

c2 θ6 (k),

G′ =
√

2
2α3 π3/2

c2 θ5 (k), H′ =
√

2
2α3 π3/2

cθ3(k) . (44)

In the above expressions the exponential dependence
is explicit while the expressions for the polynomial am-
plitudes {ηi}, {µi}, {γi} and {θi} are presented in the
Appendix for 4He and 16O nuclei.

For completeness, we are giving also the local nuclear
momentum distribution n(k), (14), which is associated
with the one-body density matrix. Its closed analytical
form within the present model has already been derived
in [18]:

n(k) = A′′ exp
[
−k2

]
+ B′′exp

[
− 1

1 + 2 y
k2

]
−C′′exp

[
− 1 + 2 y

1 + 3 y
k2

]
. (45)

and the polynomial expressions for the amplitudes
A′′,B′′,C′′ can be found in [18]. Considering the gaus-
sian factors one can realize a factor

√
2 which scales

the momenta entering the three momentum distributions
n(2)(K), n(k) and n(2)(k).

5 Results and discussion

Next step in our study is to define the parameters of the
problem, the oscillator parameter α and the parameters
β and c related to the healing distance and the strength
of the SRC, respectively. The rigorous procedure would
be to apply the variational approach based on the one-
and two-body density matrices defined so far by mini-
mizing the total energy of the system with a realistic

Fig. 1. Comparison of the present results (solid lines) with the
Variational Monte-Carlo results for Argonne v14 potential [34]
as obtained in [14], [13] (dashed lines). Top panel - comparison
of the central correlation function. Next two panels - compar-
ison of the relative pair density distributions normalized as
4π
∫
ρ(2)(s)s2ds = 1 for 4He and 16O, respectively

NN−interaction with respect to the parameters α, β and
c. As in our previous papers [18], however, we prefer to
obtain the values of α and β phenomenologically by fit-
ting the experimental elastic formfactor data using the
analytical expression for the elastic formfactor following
within the present model from (13). We should mention
that effects like center-of-mass motion, meson exchange
current effects, nucleon formfactors etc. are not taken into
account in this kind of calculations. This fact together
with the simple choice for the correlation factor and the
single-particle wave functions are the actual restrictions
of the present model considered.

The values of the parameter c for 4He and 16O are de-
termined under the additional condition the relative pair
density distribution ρ(2)(s), (38), to reproduce at s = 0 the
associated value obtained within the Variational Monte-
Carlo approach [13] and [14], respectively, while we simply
put c = 1 for 40Ca since there are no variational calcula-
tions for 40Ca. Thus, in the present numerical calculations
we are using the following values of the parameters:

α = 0.82 fm−1, β = 1.23 fm−1, c = 0.76 for 4He,
α = 0.61 fm−1, β = 1.30 fm−1, c = 0.77 for 16O,
α = 0.52 fm−1, β = 1.21 fm−1, c = 1.00 for 40Ca.

(46)

At the beginning we are comparing in Fig. 1 some re-
sults from our crude but analytical model (the solid lines)
with the results (dashed lines) emerging from the orders of
magnitude more complicated Variational Monte-Carlo cal-
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Fig. 2. Comparison between correlated (c 6= 0, solid lines) and
uncorrelated (c = 0, dashed lines) results for the relative pair
density distribution (38) normalized as 4π

∫
ρ(2)(s)s2ds = 1

for 4He, 16O and 40Ca

culations [13], [14]. The top panel of Fig. 1 clearly demon-
strates that our simple gaussian form for the correlation
factor f(r), (29), should be considered only as a first ap-
proximation to the actual shape of the realistic central cor-
relation function. Nevertheless, the analytical results for
the relative density pair distributions in 4He and 16O (two
bottom panels in Fig. 1) show quite acceptable quantita-
tive agreement with the Variational Monte-Carlo results.
Despite of the simplicity of the model and the LOA used,
the characteristic behavior of the realistic pair density is
obviously reproduced. The small values of the relative pair
distributions at s = 0 indicate the presence of significant
SRC which in the Variational Monte-Carlo calculations
are due to the repulsive core of the two-body interaction.

In Fig. 2a comparison is made between the correlated
(c 6= 0, solid curves) and the uncorrelated (c = 0, dashed
curves) results for the relative pair density distribution
ρ(2)(s), (38), for 4He, 16O and 40Ca. It is seen that due
to the SRC the shape of the distributions changes signif-
icantly. The SRC lead to a deep hole in the correlated
distributions near s = 0, while the uncorrelated distribu-
tions saturate at small distances to values which are sig-
nificantly different from zero. Our calculations have shown
that the SRC do not affect significantly the center-of-mass
pair local distributions in the coordinate space.

The above examples show that despite of the simplic-
ity of the model it is able to incorporate the SRC into the
two-body quantities of interest. Therefore it may be con-

Fig. 3. Correlated (c 6= 0) and uncorrelated (c = 0) re-
sults for the center-of-mass n(2)(K) (solid curve) and rela-
tive n(2)(k) (dashed-dot curve) pair momentum distributions
and for the nucleon momentum distribution n(k) (dashed
curve) for 4He (top panel), 16O (middle panel) and 40Ca (bot-
tom panel). All distributions are normalized to unity as e.g.
4π
∫
n(k)k2dk = 1

sidered as a useful starting point in analyzing two-particle
emission experiments.

From (e, e′2N) experiments one can expect important
information about the effects of SRC on the pair local dis-
tributions in the momentum space. In Fig. 3 we present
the center-of-mass (solid lines) n(2)(K), (41), and relative
(dot-dashed lines) n(2)(k), (42), pair momentum distribu-
tions for 4He, 16O and 40Ca. A comparison is also made
between the correlated (c 6= 0) and uncorrelated (c = 0)
results. For completeness, by dashed lines in Fig. 3, we
also show the results for the local nuclear momentum dis-
tribution n(k), (45), which is associated with the one-body
density matrix.

From Fig. 3 is clearly seen that due to the SRC high
momentum tails develop at large values of the momenta
and this behavior is typical for all three kinds of mo-
mentum distributions considered. Comparing with the un-
correlated results one can see that the correlation effects
start to dominate first for the relative pair momentum
distribution n(2)(k). Then, at larger values of the mo-
menta, the center-of-mass distribution n(2)(K) also de-
velops a high momentum tail. The local nuclear momen-
tum distribution n(k) takes an intermediate position be-
tween both distributions n(2)(k) and n(2)(K). In the case
of 4He for example the SRC become important for mo-
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Fig. 4. Correlated momentum distributions from Fig. 3,
n(k) (top panel), n(2)(K) (middle panel) and n(2)(k) (bottom
panel), but collected for all three nuclei 4He (solid curve), 16O
(dashed curve) and 40Ca (dashed-dot curve)

menta larger than 1.4, 2.1, 2.7 fm−1, for the momen-
tum distributions n(2)(k), n(k) and n(2)(K), respectively.
Similar values are valid also for nuclei 16O and 40Ca. The
reason for such behavior is obviously due to the scaling
factor of

√
2 which has been observed in the analytical

expressions for n(2)(K), (41), n(k), (41) and n(2)(k), (42).
Also, at large momenta both the correlated and uncorre-
lated momentum distributions obviously satisfy the ine-
quality:

n(2)(k) < n(k) < n(2)(K) .

Of course, the comparison of the results given in Fig. 3
has to be done keeping in mind the different meaning of
the arguments of the three types of momentum distribu-
tions considered..

Plotting together each of the nucleon momentum dis-
tributions n(2)(k), n(k) and n(2)(K) for all nuclei 4He,
16O and 40Ca, as it is done in Fig. 4, one can detect
the interesting fact that in the high momentum region
these distributions are almost universal in the sense that
they do not significantly depend on the mass number
A. This universal behavior of the local nucleon momen-
tum distribution n(k) has been observed earlier (see e.g.
[14,18,22]). Obviously similar tendency exists also for
the relative and center-of-mass pair momentum distribu-
tions.

6 Conclusions

In this paper we have derived closed analytical expres-
sions for the two-body density matrix and associated two-
body nuclear characteristics within the LOA to the Jas-
trow correlation method for the closed s − d shell nuclei
4He,16O and 40Ca under two simplifying assumptions:
harmonic-oscillator single-particle wave functions entering
the Slater determinant and a state-independent gaussian-
like correlation function. The comparison with more real-
istic results emerging from Variational Monte-Carlo cal-
culations has shown the usefulness of the expressions de-
rived. They can be applied as a starting tool in analyz-
ing two-particle emission experiments where important in-
formation about the effects of SRC on the two-body nu-
clear characteristics is expected. In particular, it has been
shown that the SRC effects start to dominate in the high-
momentum region of the relative n(2)(k), local n(k) and
center-of-mass n(2)(K) momentum distributions at differ-
ent momentum values which are proportional to a factor
of
√

2 and are almost independent on the nucleus con-
sidered. An universal asymptotic behavior of the relative
and center-of-mass pair momentum distributions (normal-
ized to unity) is indicated similar to the well known high-
momentum tail of the nucleon momentum distribution
n(k).

As a first approximation, the simplicity of the results
can help us to concentrate our attention towards the com-
plicated questions arising from the involved physical inter-
pretation and the mechanism of the two–particle emission
processes in nuclei.

One of the authors (S.S.D) is grateful to Dr. P.E. Hodgson and
the Royal Society for the warm hospitality and financial sup-
port at the Astrophysics and Nuclear Physics Laboratory of
the Oxford University. This work is supported in part by the
Contract Φ − 809 with the Bulgarian National Science Foun-
dation.

Appendix

A.1 Polynomials entering the two-body density matrix

The expressions for {P} in (35,36) which determine the
two-body density matrix are:

A.1.1 Nucleus 4He

PI1 = PI2 = (1 + 2y)−3/2

PI3 = PI4 = (1 + y)−3/2

PY2(y) = PZ2(y) = PY3(y) = (1 + 2y)−3/2
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A.1.2 Nucleus 16O

PI1(x) =
1

(1 + y)7/2

[
4 + 5 y + y2

(
1 + 2x2

)]
PI2(x1,x2) =

2

(1 + 2 y)7/2

·
[
2 + 5 y + y2 (2 + x1

2 + x2
2 + 2x12)

]
PI3(x1,x2,x3) =

1
(1 + y)7/2

[
1 + 2x23 + 2 y

·
(
1 + x12 + x13 + x23

)
+ y2 (1 + 2x12 + 2x13 + 4x12 x13)

]
PI4(x1,x2,x3,x4) =

1

(1 + 2 y)7/2

[
1 + 2x34 + 2 y

· (2 + x13 + x14 + x23 + x24 + 2x34 )
+ 4 y2 (x13 + x14 + x23 + x24 + x23 + x13 x14

+x14 x23 + x13 x24 x24)
]

PY2(x1,x2; y) =
1

(1 + 2 y)7/2

·
[
4 + 8x12 + y

(
13 + 18x12

)
+ y2

(
10 + 14x12

)]
PZ2(x1,x2; y) =

1
(1 + 2 y)7/2

·
[
1 + 2x12 + y

(
7 + 6x12

)
+ y2

(
10 + 14x12

)]
PY3(x1,x2,x3,x4; y) =

1
(1 + 2 y)7/2

·
[
1 + 2x12 + 2x34 + 4x12 x34+

+ 2y(2+3x12+x13+x14+x23+x24+3x34+4x12x34)
+ 4y2(1+x12+x13+x14+x23+x24+x34+x14x23

+x13x24+x12x34)
]

A.1.3 Nucleus 40Ca

The expressions for 40Ca have similar structure but are
up to 4-th order with respect to xij , thus being too long
to be presented here. They can be obtained in the form of
user friendly files for Mathematica 3.0 upon request.

A.2 Polynomials entering local density pair
distributions

The expressions for {ηi}, {µi}, {γi} and {θi}, which deter-
mine the two-body density and momentum distributions
(37-42) are:

A.2.1 Nucleus 4He

η1(R) = 12
√

2 η2(R; y) = − 4
√

2
(1+2 y)3/2

η3(R) = 32
(2+3 y)3/2 η4(R) = − 4

√
2

(1+3 y)3/2

µ1(s) = 3√
2

µ2(s; y) = 15√
2(1+2 y)3/2

µ3(s; y) = 24
(2+3 y)3/2

γ1(K) = 1
2 γ2(K, y) = 2

(1+2 y)3/2

γ3(K) = − 8
√

2
(2+5 y)3/2 γ4(K) = 2

(1+y)3/2(1+4 y)3/2

θ1(k) = 4 θ2(k; y) = 20
(1+2y)3/2

θ3(k) = − 8
(1+4 y)3/2

θ4(k) = − 64
√

2
(2+5 y)3/2 θ5(k) = 4

(1+4 y)3

θ6(k) = 16
(1+ y)3/2 (1+4 y)3/2

A.2.2 Nucleus 16O

η1(R) = 2
√

2
(
117 + 104R2 + 48R4

)
η2(R; y) =

√
2

(1+2y)7/2

[
48R4 (28 + 60y + 35 y2)

+ 8R2 (364 + 848y + 555 y2)

+ 3 (1092 + 2780y + 1837 y2)
]

η3(R) = − 128
(2+3y)15/2

[
1536R6 y2 (1 + 3y + 2 y2)2

+ 192R4 (28 + 224y + 749 y2

+ 1352 y3 + 1419 y4 + 843 y5 + 225 y6)

+ 8R2 (2 + 3y)2 (364 + 1762y + 3489 y2

+ 3105 y3 + 990 y4)

+ 9 (2 + 3y)3(182 + 563y + 588 y2 + 212 y3)
]

η4(R) = 4
√

2
(1+3y)15/2

[
384R6 y2 (1 + 6y + 8 y2)2

+ 48R4 (7 + 112y + 749 y2 + 2704 y3

+ 5676 y4 + 6744 y5 + 3600 y6)

+ 8R2 (1 + 3y)2 (91 + 881y + 3489 y2

+ 6210 y3 + 3960 y4)

+ 9 (1 + 3y)3(91 + 563y + 1176 y2 + 848 y3)
]
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µ1(s) = 1
4
√

2
(93 + 34 s2 + 3 s4)

µ2(s; y) = 1
4
√

2(1+2y)7/2

[
2697 + 6540y + 4047 y2

+ 2 s2 (493 + 1214y + 831 y2)

+ 3 s4 (29 + 64y + 39 y2)
]

µ3(s; y) = 8
(2+3y)15/2

[
3 (2 + 3y)3 (434 + 1245y

+ 1158 y2 + 348 y3) + 2 s2 (2 + 3y)2

· (476 + 2370y + 4713 y2 + 4215 y3 + 1386 y4)

+ 12 s4 (28 + 232y + 813 y2 + 1554 y3

+ 1733 y4 + 1083 y5 + 297 y6)

+ 24 s6 y2 (1 + 3y + 2 y2)2
]

γ1(K) = 1
480 (117 + 26K2 + 3K4)

γ2(K; y) = 1
480 (1+2y)7/2

[
3K4

(
28 + 60y + 35 y2

)
+ 2K2

(
364 + 872y + 603 y2

)
+ 3

(
1092 + 2732y + 1741 y2

)]
γ3(K) = 2

√
2

15 (2+5y)15/2

·
[
24K6 y2 (1 + 2y)2 (1 + 4y + 3 y2)

− 12K4 (28 + 344y + 1705 y2 + 4340 y3

+ 5933 y4 + 4087 y5 + 1105 y6)

− 2K2 (2 + 5y)2 (364 + 2870y + 8263 y2

+ 10185 y3 + 4680 y4)− 3 (2 + 5y)3

· (546 + 3251y + 6160 y2 + 3770 y3)
]

γ4(K) = 1
120 (1+y)11/2 (1+4y)7/2

·
[
3K4 (7 + 46y + 72 y2) + 2K2 (91 + 707y

+ 2250 y2 + 3238 y3 + 1604 y4)

+ 3 (1 + y)2 (273 + 1886y + 5060 y2

+ 6424 y3 + 3472 y4)
]

θ1(k) = 1
60 (117 + 104k2 + 48k4)

θ2(k; y) = 1
60(1+2y)7/2

[
48k4(29 + 64y + 39y2)

+ 8k2(493 + 1202y + 807y2)

+ 3(899 + 2204y + 1397y2)
]

θ3(k) = − 1
30(1+4y)7/2

[
48k4 + 8k2(17 + 80y + 24y2)

+ 3(31 + 224y + 400y2)
]

θ4(k) = 16
√

2
15(2+5y)5/2

·
[
1536k6y2(1 + 2y)2(1 + 4y + 3y2)

− 3(2 + 5y)3(434 + 2571y + 4800y2 + 2870y3)

− 8k2(2 + 5y)2476 + 3774y + 11043y2

+ 14075y3 + 6780y4)− 192k4(28 + 344y

+ 1697y2 + 4268y3 + 5691y4 + 3727y5 + 905y6)
]

θ5(k) = 1
60(1+4y)7

[
48k4 + 8k2(17 + 160y + 368y2)

+ 3(1 + 4y)2(31 + 200y + 496y2)
]

θ6(k) = 1
15(1+y)11/2(1+4y)7/2

[
48k4(7 + 46y + 72y2)

+ 8k2(119 + 935y + 2862y2 + 3890y3 + 1844y4)

+ 3(1 + y)2(217 + 1486y + 4236y2 + 5944y3

+ 3472y4)
]

A.2.3 Nucleus 40Ca

Again, the expressions for 40Ca have similar structure but
are too long to be presented here. They can be obtained
in the form of user friendly files for Mathematica 3.0 upon
request.
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H. Dickhoff and H. Müther, Phys. Rev. C 57, 1691 (1998)



S.S. Dimitrova et al.: Two-body density matrix for closed s− d shell nuclei 345

7. S.Boffi, C.Guisti, F.Pacati and M. Radici, Electromagnetic
Response of Atomic Nuclei, Oxford Studies in Nuclear
Physics (Clarendon Press, Oxford, 1996).

8. W. J. W. Geurts, K. Allaart, W. H. Dickhoff and H.
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